MOVI®

Strategi - lave nivå og tidlige stadier

Gro Vee, MOWI Marit Stormoen, NMBU (tidligere MOWI)

FHF Lusekonferanse (Trondheim) 22 January 2019

Agenda

- Zero adult female strategy, background and purpose
- Experiences
- Conclusions

Background

- Are interventions done at too high lice levels?
 - Infection pressure is generated and spreads internally and externally
 - Internal infection pressure plays a significant role

Monitoring and control

- Better planning and early intervention
- Single cage intervention instead of whole site

Må halvere lakseproduksjonen

OPEN CACCESS Freely available online

PLOS ONE

Space-Time Modelling of the Spread of Salmon Lice between and within Norwegian Marine Salmon Farms

Magne Aldrin^{1,2}*, Bård Storvik¹, Anja Bråthen Kristoffersen^{3,4}, Peder Andreas Jansen³

1 Norwegian Computing Center, Oslo, Norway, 2 Department of Mathematics, University of Oslo, Oslo, Norway, 3 Norwegian Veterinary Institute, Oslo, Norway, 4 Department of Informatics, University of Oslo, Oslo, Norway

Abstract

```
Parasitic salmon lice are potentially harmful to salmonid hosts and farm produced lice pose a threat to wild salmonids. To 
control salmon lice infections in Norvegian salmonid farming, numbers of lice are regularly control and lice abundance is 
reported from all salmonid farms every month. We have developed a stochastic spacetime model where monthly lice 
abundance is modeled simultaneously for all fams. The set of fams is regarded as a network where the degree of contact 
between farms depends on their seaway distance. The expected lice abundance at each farm is modeled as a function of i) 
lice abundance in previous months at the same fam, ii) at neighbourhood farms, and iii) other, unspecified sources. In 
addition, the model includes explanatory variables such as seawater temperature and farm-numbers of fish. The model 
gives insight into factors that affect salmon lice abundance was attributed to infection within farms. 28% was attributed to 
infection from englibourhood farms and 6% to conspecified Sources. In Interference, the resent the relative risk, 
transmission kernel for salmon lice. The grast and abundance of salmon lice. For data depresent of future 
scenario salmonia lice site spected salmon lice for a salm abundance, or salmon's lice. There more, empresent the relative risk, 
transmission kernel for salmon lice. The grast modeling fammary lice for data depresent of future 
scenario simulation tools for examining the spread and abundance of salmon lice on farme salmonids under different 
control regimes.
```

Citation: Aldrin M, Storvik B, Kristoffersen AB, Jansen PA (2013) Space-Time Modelling of the Spread of Salmon Lice between and within Norwegian Maris Salmon Farms: PLoS ONE 8(5): e64039. doi:10.1371/journal.pone.0064039

Editor: Martin Krkosek, University of Toronto, Canada

Received November 6, 2012; Accepted April 10, 2013; Published May 20, 2013

Copyright: © 2013 Aldrin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Research Council of Norway project PREVENT, "Salmon lice-prevention and treatment," project number 199778/540. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: magne.aldrin@nr.no

Source of infection pressure

Internal infection pressure is the main driver of lice levels

- Aldrin et al. 2013 & Revie et al. 2015
 - On average the main source of infection pressure is internal

Lice reproductive success is dependent on the amount of lice present

• Stormoen et al. 2012: reproduction rate is not linear, and <u>with lower</u> adult female level there is lower reproduction success

MQWI

Provide your cleaner fish with a good workplace

- · Health feeding is necessary to ensure hardworking and healthy cleaner fish
- Environment a clean environment in the pens ensures that the cleaner fish work optimally
- Safety appropriate number of well designed hides provides a safe working environment.

Count lice weekly in every pen

· To take action early, we must know the level of lice at all times

Protect your fish if there is high infection pressure

· Skirts, deep lights and deep feeding can help

Intervene early, on a pen level

- · Pens that approach 0.2 adult females should be treated
- Choose non-medical intervention as the first option
- · Single pen intervention should always be in compliance with internal guidelines

Measure your progress

- · Register the number of adult female lice on pen level Register the number of medical interventions
- · Register the use of non-medical interventions

Zero adult female strategy

Strategy launched spring 2015

- Count all pens weekly to allow for early intervention and reduce infection pressure (internal & external)
- Use preventative tools to avoid infection •
- Intervene on a single pen level •
- Intervene before pens have reached 0.2 adult females
- Use non-medicinal methods where possible •

Aim: Early lice mitigation on cage level will give lower infection pressure

Zero adult female strategy review: data

Large dataset

- 14G, 15G , 16G and 17G (incomplete)
- All regions
- Total 221 seawater cycles

Analysis;

- By generation, calendar year and year at sea
 - per region and per site
- Treatments; meds and non-meds (what and when)
- Adult female levels
- Treatment intervention level
- Proportion of cages treated
- Cleanerfish (%) per site and region

Experiences - overview of sea lice levels

- 2015G second year at sea the most challenging for all regions
- Second year at sea 16G, positive trend compared to 15G for all regions
- Early on we had capacity issues with respect to NMM
 - Delayed intervention

MOV

Experiences - lice count before treatment

- Despite regional differences, one region reached 100 % compliance with the strategy
- In 2014, 60 % of interventions were initiated when adult female levels were >0,2
- In 2017, <u>100 % of interventions</u> were initiated when adult females levels were <0,2

Experiences - number of treatments per pen, by generation

- Overall positive trend from 2014G in each Region
- Region 1 and 4 with slight increase from 2014G to 2015G
- Region 2 with strong reduction

Number of treatments per cage, by generation

Experiences - if <100% compliance

- In some areas, not fully compliant with the strategy
 - ~ 35% treated in compliance 1st year at sea
 - ~ 20% of pens treated in compliance 2nd year at sea

Indications of relationship between adult female level and number of pen treatments

Conclusions

- Counting all pens weekly implemented
- Change in lice levels indicates better control 1st year at sea
 - However, still occurrences of higher lice levels
- Interventions have shifted towards less whole site treatments (35 % in 2014G to < 20 % in 2017G)
- Number of treatments per pen reduced from 14G to 16G (17G not finished analyzed)
- Lice levels at intervention with NMM has gone down
- Degree of compliance affects the outcome
- Strong indications that higher adult female level results in greater number of pen treatments

Thank you

