

MICRO RED

Reduction of Microplastic Emission through System Optimisation of Feed Pellet Conveying Pipelines

Jana Chladek, Chandana Ratnayake, Huaitian Bu - SINTEF, Andy Booth – SINTEF Ocean & Alessio Gomiero – NORCE

Online webinar: Microplastics occurrence in fisheries and aquaculture 21st April, 2021

Background for project

• FHF November 2020 call

"Tiltak for å redusere utslipp av både makro- og mikroplast fra sjømatnæringen

Delmål 3: Fremskaffe kunnskap om tiltak og beste praksis som næringen kan iverksette for å redusere utslipp av nano- og mikroplast fra fôrslanger"

- <u>Budget:</u> 2 000 000 NOK
- <u>Project duration:</u> 15.01.2021 31.12.2022
- Partners:

<u>Project manager:</u> SINTEF

Research topic

- Erosion of plastic pipes due to abrasion by fish feed pellets => release of microplastics into environment
- Pneumatic conveying systems often suboptimal
 too high air velocities leading to:

Objectives

Primary Objective

- optimise the feed pellet conveying systems, technology and costs in fish farms to minimise microplastic emissions and maximise pipeline lifetime and pellet integrity

Sub-objectives

- A. Evaluate the effect of air velocity and pipeline configuration (bend radius) on pipe wall erosion for selected fish feed qualities WP1 (pneumatic conveying tests)
- B. Quantify the amount of micro- and nanoplastic (MNP) fragments from WP1 and characterize their physical properties (size, shape) WP2
- C. Map the erosion pattern and evaluate the evolution of erosion with application time WP3
- D. Implement the results in a simulation software for a selected industrial site to demonstrate how the feeding system can be optimized WP4
- E. Disseminate the learning from the project and present the methodology for optimization of the feed pellet conveying systems to the fish farming community WP4

Work Package Structure

WP1 – Conveying pilot tests

Chandana Ratnayake Chief Scientist, SINTEF

WP1-Objectives

- To carry out pneumatic conveying pilot-scale tests
- To collect data relevant to transport properties of feed pellets
- To quantify the weight loss in pipeline sections
- To provide pellet samples for the test under WP2
- To provide pipeline section for the test under WP3
- To formulate the calculation software for WP4

Pneumatic conveying of feed pellets

Dilute Phase- high velocity & low transport rate

Dense Phase- low velocity & high transport rate

Infrastructure- Pilot conveying rig

Conveying pilot test

Select HDPE pipes & fish feed qualities

Identify main pipeline components

Setting up conveying pipeline

> Perform tests under different conveying parameters

Collect data- feed transport rate, supply air pressure & volume flow (velocity),

influence of pipe components

Test outcome

Calculation software

Previous works

Design & optimise pellet conveying pipelines of pellet carrier ships

- to minimise pellet degradation
- to increase transport capacity

Bulk ship "Eidsvaag Pioner"

MICRO RED

WP2 – Quantification and characterization of eroded pipe fragments

Alessio Gomiero, Senior Researcher, NORCE

&

Andrew Booth, Research Manager, SINTEF Ocean

WP2 Objectives

- Visualize and mass estimate MP fragments generated during feeding pipes abrasion tests performed in WP1
- The quantification and characterization will support the implementation of the abrasion model (WP4) and will directly contribute to optimization of the feed hoses and feed delivery parameters to minimize particle generation and emissions in the aquaculture production process

WP2 – Task activities

Task 2.1 – Sample's preparation to analysis targeting interferents removal, isolation, and fractionation

Samples provided by WP1 will be treated with surfactants in a water based dense solution to help extracting the plastic particles present in the fat layer present in the fish feed pellets. The obtained sample will be processed and split into microplastic and nanoplastic fractions prior to further dedicated sample preparation and analysis approaches. (D1 >300 μ m, 300 μ m > D2 >20 μ m, D3 <20 μ m)

Task 2.2 – Quantification and characterization of eroded microplastic fragments

The micron-sized plastic particles subfraction will be characterized by: D1 >300 μ m = ATR FTIR 300 μ m > D2 >20 μ m = μ FTIR Imaging

Task 2.3 – Qualification of eroded nanoplastic fragments

There are currently no validated methods for the analysis of nanoplastic particles. An approach focused on using HDPE additive chemical markers will be performed

MICRO RED

WP3 – Characterization of eroded pipe surface

Huaitian Bu Senior Scientist, SINTEF

WP3-Objectives

- To visualize the erosion pattern of the pipeline under selected conveying conditions in WP1
- To provide information on the character of the surface damage on the pipe wall surface, thus complement the result on weight loss obtained in WP1 and quantification of MP in WP2
- To set up initial correlation between the conveying parameters and the evolution of erosion and physical steadiness of worn pipes in WP1

WP3: Task activities

• <u>Task 3.1</u> Surface detection of eroded pipeline:

- The surface topography of the inner wall of the pipelines will be investigated by white-light interferometry (WLI) to map the roughness and erosion pattern of pipeline surface
- Scanning electron microscopy (SEM) will be utilized to **examine the surface damage on the pipe wall surface** (e. g. depth of penetration, localized grooves or dispersed erosion) and thereby, complementing the results on weight loss obtained in WP1 and quantification of MP in WP2

• <u>Task 3.2</u> Evolution of erosion in the pipelines:

• The physical properties (e.g. tensile strength, elongation at break and impact strength) will be measured for both virgin and eroded pipelines to set up an initial correlation between the conveying parameters and the evolution of erosion and physical steadiness of worn pipes in WP1

The results of both tasks will feed directly into optimization of the fish feeding systems in WP 4.

Relevant competence and facilities

- Surface topography
 - Optical microscopy
 - White-light interferometry (WLI)
 - Scanning electron microscopy (SEM)
- Mechanical tests
 - Tensile
 - Impact
- Chemical characterization
 - Fourier-transform infrared spectroscopy (FT-IR)
 - Nuclear magnetic resonance (NMR)

WP4 – Implementation in fish farms (case study) & recommendations

Chandana Ratnayake

Chief Scientist, SINTEF

WP4-Objectives

• To implement the results of simulation software in a selected fish

farm (full scale conveying system) as a case study

• To arrange a workshop with the industrial stakeholders to transfer knowledge generated during the project

Full scale conveying plant- fish farm

Calculation software

MICRO

Conveying System Optimisation

Outcome

* Results of case study* Findings of WP2 and WP3

Industrial community through a workshop together with further recommendations for best practice

MICRO RED

Thank you for your attention!

For more information about the project, please contact:

Jana Chladek Tel: +47 971 04 775, jana.chladek@sintef.no

Chandana Ratnayake Tel: +47 959 20 208, <u>chandana.ratnayake@sintef.no</u>