

Hvordan opplever laks som har gått i sjovann behandling med ferskvann? eller What happens when you put a marine salmon into freshwater?

Mark D. Powell <u>mark.powell@niva.no</u> +47 98294087

Norwegian Institute for Water Research, Department of Biology, University of Bergen

NIV

www.niva.no

Ionic and water movements in a marine salmon

Characteristics of a marine salmon physiology

- Gill and skin epithelium is relatively permeable to salts and water
- Active excretion of Na⁺ and Cl⁻ across the gills
 Chloride cells and accessory cells
- Salt and water uptake across the gut
- Active drinking
- Excretion of Mg^{2+} and SO_4^{2-} across the kidney
- Low volumes (<5 ml kg⁻¹ h⁻¹) of isomotic urine (c.f. freshwater salmonids >15 ml kg⁻¹ h⁻¹)

Ionic and water movements in a freshwater salmon

What happens if a saltwater salmon is put into freshwater?

12/10/2015

Comparative Biochemistry and Physiology Part A 134 (2003) 525-537

www.elsevier.com/locate/cbpa

Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (*Salmo salar* L.)

Shane D. Roberts^{a,*}, Mark D. Powell^b

"School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1-370, Launceston,

responses

16

Hormonal effects and responses: Natriuretic peptides

- Found in all vertebrates
- Originally discovered in rat atria by deBold (1981)
- Function to maintain salt and water balance (volemia)
 - Lower blood pressure by increasing renal excretion of salt and water and by dilating the blood vessels
- Several different members of natriuretic peptide family, each a separate gene
- Mainly secreted from heart, but brain and other local sites of synthesis also

Heart natriuretic peptide response to SW-FW transfer

Marked increase in VNP in hypervolemic response

Increased cardiac stretch due to increased blood volume?

12/10/2015

Effects of freshwater exposure on marine salmon mucous

The mucous becomes hydrated and less viscous

Roberts and Powell 2005 J Comp Phys B 175: 1-11

Roberts and Powell 2008 JFB 72: 1864-1870

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aqua-online

CrossMark

Effects of FW on sea lice infested salmon

Freshwater treatment of amoebic gill disease and sea-lice in seawater salmon production: Considerations of water chemistry and fish welfare in Norway

Mark D. Powell ^{a,*}, Pat Reynolds ^b, Torstein Kristensen ^c

^a Norwegian Institute for Water Research, Thormøhlens gate 53D, 5006 Bergen Norway

^b Gildeskål Forskningsstasjon AS, 8140 Inndyr, Norway

^c Faculty of Biosciences and Aquaculture, University of Nordland, PO Box 1490, Bodø Norway

Treatment	Na⁺ mM	K⁺ mM	TCO ₂ mM	Glucose mg/L	Hct %	pH
Pre	155.1ª	4.06	9.6	78.9ª	26.9ª	7.353ª
	(± 0.7)	(± 0.24)	(± 0.4)	(± 2.2)	(± 1.0)	(± 0.033)
1h 1x handling	152.6ª	3.56	10.6	97.4 ^b	27.4ª	7.213
	(0.6)	(0.18)	(0.9)	(3.8)	(0.9)	(0.045)
1h2xhandling	162.4 ^b	4.16	10.8	96.6 ^b	27.6ª	7.202 _b
	(2.5)	(0.30)	(0.8)	(4.4)	(1.9)	(0.018)
15 min 1x handling	158.6ª	3.02	10.2	91.4 ^b	31.6b	7.119 ^b
	(0.7)	(0.37)	(0.5)	(3.0)	(0.8)	(0.019)
15 min 2x handling	166.4 ^b	4.24	9.0	89.0ª	31.0ª	7.145 ^b
	(1.3)	(0.72)	(0.7)	(3.5)	(0.8)	(0.038)

Fish handled back into seawater

FHF seminar Gardemoen 12 October 2015 | 12/1

12/10/2015

Indicate stress responses to handling

Natriuretic peptide responses in AGD affected gills

Effects of acute freshewater exposure on hyperplastic gill lesions

Figure 3 Degree of lesion fragmentation (no. sections per fragmented lesion) (mean \pm SE) on the gills of Atlantic salmon pre- and post-3-h bathing (n = 9 per treatment). This data is from the laboratory experiment. Letters indicate significant differences when compared with pre-bath controls (P < 0.05).

Roberts and Powell 2003 Journal of Fish Diseases 26: 591-599

NIV

FHF seminar Gardemoen 12
October 201512/10

12/10/2015

Conclusions: Acute freshwater transfer

- Acute ion losses
 - Corrected within 3 h
 - Losses greater in AGD affected fish
- Acute hypervolemia
 - Stimulation of NP release (VNP)
 - Up-regulation of NPRs in the gills: cardioprotective
- Hydration of mucus
 - Changes in protein and carbohydrate composition
 - Reductions in viscosity
- Handling effects more evident than osmotic effects
- Fracturing of hyperplastic tissue (osmotic shock)
 FHF seminar Gardemoen 12 October 2015
 12/10/2015

Thank you for your attention

- Acknowledgements
 - Australian Research Council
 - Deakin Univeristy Prof. Tes Toop
 - Aquafin CRC
 - Univeristy of Tasmania
 - University of Nordland Prof. Torstein
 Kristensen
 - GIFAS Dr Pat Reynolds
 - FHF

FHF seminar Gardemoen 12 October 2015 12/10/2015