

Contributions of the Aquatic Environment to the Global Food Supply

Karl D. Shearer

Aquaculture Protein Centre Dept. of Animal and Aquacultural Sciences Norwegian University of Life Sciences Ås Norway

NHL Oslo 29 November 2012

Norwegian University of Life Sciences

Three Questions from Stein Ove Østvik

- 1. The contribution of marine protein to the global food supply
- 2. The benefits of consuming marine proteins
- 3. Economic opportunities for marine proteins

The contribution of seafood to global food supply

The Current Global Food Situation

Human Food Requirements for Energy and Protein

Average per Person

Energy 2500 kcal/day Protein 55 g

Johansson et al., AMBIO (2010) ⁵

Global Requirements for Energy and Protein

Annual needs of 6.7 billion people in 2010

Energy 7092 TWh Protein 134 Mt

Johansson et al., AMBIO (2010) ⁶

Parameter	Energy (TWh)
Gross energy	19900
Seeds	-700
Lost	-1300
Mould	-2700
Discarded	-360
Inedible	-1770
Feed (oil crop)	-690
Feed (peas & cereal)	-4545
Livestock	1183
Game, fish &seafood	217
Net Energy	9265

APC

Aquaculture Protein Centre

Human Food Energy Need vs. Supply

Region	Population (10 ⁹)	Demand (TWh)	Available (TWh)
World	6.7 (2010)	7092	9265
EU27	0.50 (2010)	526	431

In 2010 we could feed 8.7 billion

Johansson et al., AMBIO (2010)

We can conclude that, at present, we have enough food to feed the global population.

Malnutrition (one billion people) is due to poverty.

FAO Global Food Price Index

Lagi et al., 2011

10

Future Food Demand and Supply

Increasing Food Demand

The Food and Agriculture Organization (FAO) projects that a 70% increase in the food supply will be required by 2050

Due to an increase in population and an increase in meat consumption

Projected Global Population Growth under 3 scenarios*

APC

Quaculture Protein Centre

*United Nations Department of Economic and Social Affairs, Population Division (2011). World Population Prospects: The 2010 Revision

Human Food Energy Demand

Region	Population (10 ⁹)	Demand (TWh)	Available (TWh)
World	6.7 (2010)	7092	9265
World	10.1 (2100)	10690	+ 15%
		+51%	

Where does our food come from?

Ecosystems and Trophic Levels

quaculture Protein Centre

Terrestrial Crop Production

Sun, Water, Soil, Nutrients

Global Crop Production 2010

18

APC

Aquaculture Protein Centre

Limits to Terrestrial Plant Production

Arable land is limited Topsoil loss Water is limited Phosphorus and potash Salinization

Terrestrial Meat Production

Sun, Water, Soil, Nutrients

Global Meat Production 2010

FAO Food Outlook, Nov 2012

Global Meat Production 1960-

Limits to Terrestrial Animal Production

Feed costs Ethical considerations

Aquatic Plant Production

Wild Aquatic Plant Harvest

Harvest of aquatic plants is about 3.5 Mt wet weight

The majority is consumed directly

Aquatic Meat Production

Global Fish Production

27

Trends Growth in Global Fish Production

Figure 8.1. Declining growth rate of fish production

Growth rate of capture and aquaculture fish production by decades

Source: OECD and FAO Secretariats.

StatLink and http://dx.doi.org/10.1787/888932427151

APC

Aquaculture Protein Centre

Limits to Harvest of Wild Marine Resources

Over fishing Climate change Pollution Ocean acidification Introduced species

Aquaculture

Aquaculture

Global Aquaculture Production 2009

Classification of Aquaculture

Trophic level	Degree of Control
Plants	Extensive
Herbivore	Extensive
Omnivore	Semi-intensive
Carnivore	Intensive

Concentrated Aquatic Animal Feeding Operation (CAAFO)

Global Aquaculture Production 2009

Group	Production (Mt)	Value (US\$ billion)	Value (\$ per kg)
Freshwater fishes	30.64	44.19	1.44
Diadromous fishes	3.53	14.00	3.96
Marine fishes	1.95	7.10	3.64
Crustaceans	5.30	24.13	4.55
Molluscs	13.52	13.13	0.97
Miscellaneous aquatic animals	0.73	2.75	3.77
Aquatic plants	17.34	4.82	0.28
Total aquaculture production	73.02	110.12	1.51

The benefits of consuming marine proteins

Seafood and Human Health

The benefits and risks of seafood consumption are examined:

- 1. Measuring the levels of nutrients and known risk factors
- 2. In a clinical trial (short term, variables, mechanisms))
- 3. An epidemiological study (long term, associations)

Measuring Seafood Composition

NIFES

National Institute of Nutrition and Seafood Research

Nutrient Composition of Seafood

Undesirable Substances

Clinical trial

An Example

- (A) Increased Omega-3 intake reduces (B) Blood triglycerides
- (B) Reducing triglycerides improves (C) Cardiovascular health

Therefore

(A) Increased Omega-3 intake improves (C) cardiovascular health

Clinical Trial

(A) Increased Omega-3 intake reduces (B) Blood triglycerides

(B) Reducing triglycerides may improve (C) Cardiovascular health

Therefore

(A) Increased Omega-3 intake may improve (C) Cardiovascular health

Rizos, E. C. et al., Association Between Omega-3 Fatty Acid Supplementation and Risk of Major Cardiovascular Disease Events: A systematic Review and Meta-Analysis. Sept 2012. 308 (10) 1024-1033.

No reduction in cardiovascular outcomes and omega-3 supplementation

Clinical Trials

Correlation vs. Causation

We need to understand the mechanisms

e.g. How do omega-3s affect cardiovascular health?

Epidemiological Study

Searching for correlations Between variables

Chowdhury, R. et al. BMJ 2012; 345

Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis

Meta-analysis 38 studies 794,000 people People consumed fish 0 or 1 times/week 2-4 times/week 5 or more times/week

Input Variables A1, A2, A3

A PC Aquaculture Protein Centre Centre of Excellence

Statistics

Examine the correlation between the input variables A1, A2, A3

and the response in

Variable C (Incidence of stroke)

Results of the Analysis

The were a total of 34817 strokes (C)

A3 Fish 0-1 times/week 12057 strokes
A2 Fish 2-4 11334 -6%
A1 Fish 5 or more 10610 -12%
34817

A PC Aquaculture Protein Centre

Conclusion

Correlation vs Causation

The Alternative Explanation

48

Seafood and Human Health

Contaminant free seafood is a good source of nutrients,

but

many studies examining the benefits or risks of consuming seafood have flaws and that additional studies are required.

The Salt Scare of the 90's

FINANCIAL POST

Junk Science Week: Salt scare lacks solid evidence

Opportunities associated with seafood

Wild Harvest

It is unlikely that the total wild harvest will increase significantly

Aquaculture Opportunities

Extensive Aquaculture Production (Mt) 2009

This is as close as we can get to a free lunch

54

Intensive & Semi-intensive Aquaculture Production (Mt) 2009

Concentrated Aquatic Animal Feeding Operations

Animal production, both terrestrial and aquatic, is moving, increasingly, toward concentrated feeding operations CAFOs and CAAFOs

Global Compound Feed

Table 1: World Compound Feed Production by region 2011 (million metric tons)

Region	Million Metric Tons
Asia	305
Europe	200
North America	185
Latin America	125
Middle East / Africa	47
Other	11
Total	873

Source: Alltech 2012 Global Feed Survey

Compound Feed by Species

Table 2: Global Feed Tonnage by Species 2011 (million metric tons)

Region	Pig	Poultry	Ruminant	Aqua	Other**
Asia	81	116	80.12	24.4	4.03
Europe*	63.09	70.25	57.11	1.33	8
North America	31.23	91.07	45.5	0.286	17.09
Middle East / Africa	0.87	27.71	17.04	0.60	0.72
Latin America	24.80	71.26	22.34	1.88	4.46
Other	2	4.60	3.49	0.20	0.86
Total	202.99	380.89	225.6	28.696	35.16

*EU27 & Non-EU Europe and former Soviet Union / **Other includes Horse (9.24M) and Pets (25.6M) Source: Alltech 2012 Global Feed Survey

Salmon Feed

Until recently, was composed primarily of things people did not eat.

But now We are feeding fish human food.

Plant Protein and Oil in Norwegian Salmon Feeds

Figure 3 Inclusion levels of vegetable proteins and oils in Norwegian salmon diets; information provided by the major feed producers in Norway and calculated on the basis of information from Norwegian Seafood Federation (FHL), Norway (www.fhl.no).

Atlantic Salmon Feed in Norway

This would require (as plant ingredients)

270,000 t wheat (United States) = 75,000 ha 1,560,000 t soy (Brazil) = 675,000 ha <u>950,000 t</u> canola (Europe) = <u>320,000 ha</u> 2,780000 t 1,070,000 ha

Nutrient Composition of Norwegian Salmon Feed

Component	Feed
Mass (tons)	1,137,120
Protein (tons)	460,850
EPA+DHA (kg)	49,373
Phosphorus (tons)	12,046

APC

Aquaculture Protein Centre

Component	Feed	Fillet	% Retained in fillet
Mass (tons)	1,236,000	612,097	49% (16%)*
Energy (MJ)	31,000	6,646	21%
Protein (tons)	460,850	121,807	26%
EPA+DHA (kg)	49,373	12,909	26%

APC

Quaculture Protein Centre

Food In: Food Out

1 kg feed

550 g fillet

450 g protein

110 g protein

Aquaculture and Human Protein Needs

Feeding Norwegian Salmon for 1 Year

Protein in the feed could supply 19.5 million people for 1 yearProtein recovered can supply 4.9 million people for 1 yearProtein lost could supply 14.6 million people for 1 year

Price (\$/Ib) of Seafood in Seattle

\$ 0.88	\$ 4.49	
- The second		ъ 5.99- 7.99
\$ 3.39	\$ 4.99	
¢ 2.00		
φ 2.99	\$ 5.99	\$ 8.99

Price (NOK/kg) of Seafood in Seattle

APC Aquaculture Protein Centre

Ethical Issues

"The rich will consume the high quality protein and the poor will eat lower quality protein because that is all they can afford."

Aquaculture

Has the potential to increase significantly

Feed cost, disease and escapement are major issues

Recirculation systems will increase

Seafood must compete with with terrestrial meat in price

Meat consumption my become an ethical issue

Summary

- The human food supply is comprised mainly of terrestrial plants
- Plant production is becoming constrained by limited natural resources
- Demand for animal protein is increasing due to population increase and changes in diet preferences
- Meat production, both terrestrial and aquatic, rely on terrestrial feed ingredients
- Meat production has a large negative impact on the total food supply 71