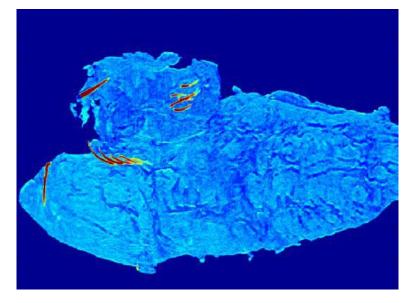

Pinbone measurements in fish fillets using CT

Jens T. Thielemann

Marianne Bakken

Helene Schulerud

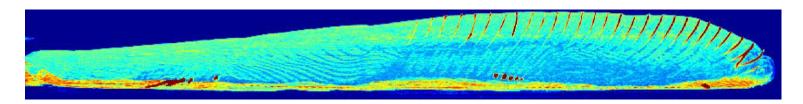
Contact: jtt@sintef.no


Agenda

- Background & objective
- Experiment design
- Processing of raw data
 - Low level
 - Higher level
- Results
- Conclusion and summary

Background & project objective

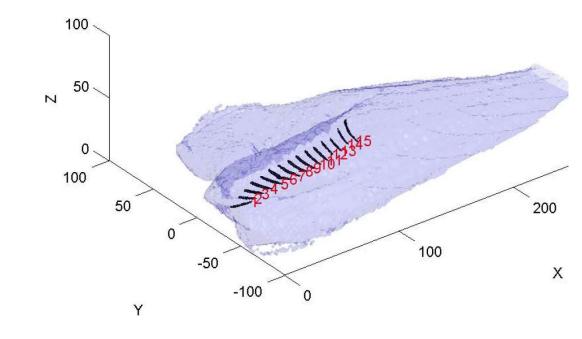
- SINTEF IKT and Marel develops X-ray pinbone removal machine
- How to enable cost-efficient testing of various designs?
- Objective: Provide detailed information about the size, orientation and location of pin bones in selected species of *filleted* fish.



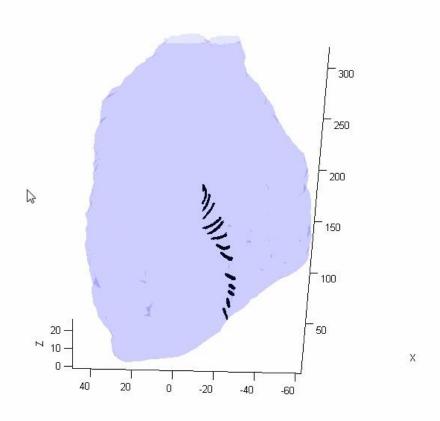
Cod

Experiment design

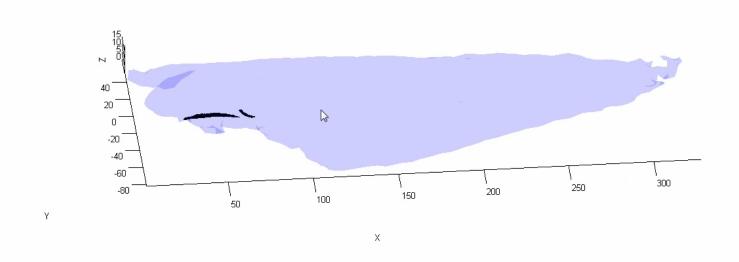
- Species: Cod, haddock, saithe, salmon
- 64 fish scanned, 16 of each species
- CT machine: Toshiba Aquilion One CT
 - 0.5 mm slice thickness (X)
 - 0.24-0.52 mm resolution (Y,Z) depends on size of fish
- Result: 3D cube with information about specific absorption per voxel



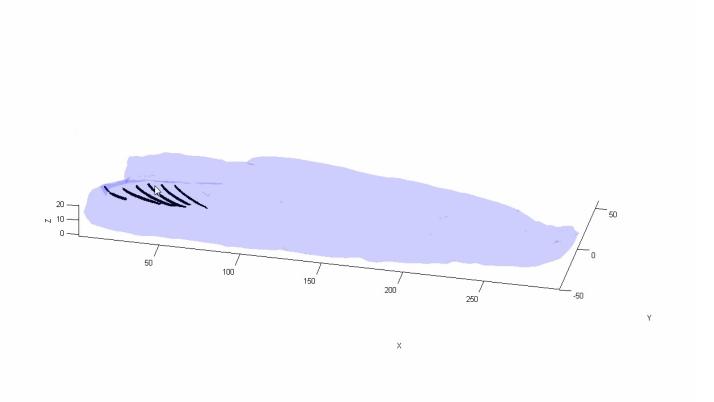
Salmon


Processing of CT data - segmentation

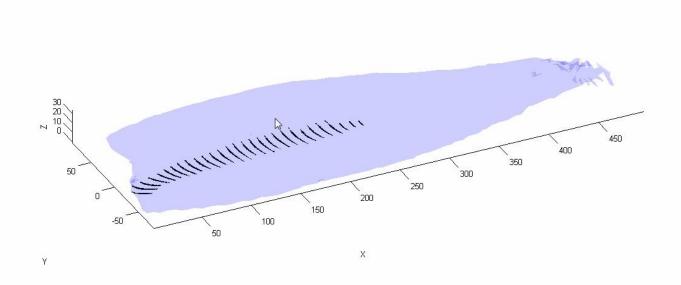
- Segmented raw data into bones, meat, air
- Each individual bone has its unique ID
- Rotated each fish such that
 - X: length axis of fish
 - Y: width axis of fish
 - Z: height axis of fish



Example cod



Example haddock



Example saithe

Example salmon

Processing of segmented data - bones

- Measured the number of bones, and for each bone its:
 - Thickness
 - Length
 - Angle relative to major axis
- Length and angle measurements relatively precise
- Thickness less precise. Biased towards too thick
- Lots of data and detailed tables in the report. ©

Spices	Mean no of bones	Min no of bones	Max no of bones	Mean bone Thickness	Min bone Thickness	Max bone Thickness	Mean bone Length	Min bone Length	Max bone Length
Cod	13	9	17	(mm) 0.8	(mm) 0.4	(mm) 1.4	(mm) 17	(mm) 5	(mm) 38
Haddock	7	2	16	0.8	0.5	2.8	18	6	31
Saithe	7	5	10	0.9	0.5	4.4	22	5	34
Salmon	29	28	31	0.8	0.5	1.9	22	7	37

Results

- In general: Variation within species is too large for any major conclusions
- Possible hints for further studies (too small dataset to say anything decisive):
 - Salmon seems to have a dominating YZ angle of 30±5 degrees
 - Cod seems to have a dominating YZ angle of 25±7 degrees
 - •
- Further analysis done with Marel gives indication of
 - Possible yield gain by using different pinbone removal solutions
 - Possible yield gain by positioning source(s) and detector(s)
 - Conclusions beyond the scope of this project/presentation.
 - We were able to identify some possible good ideas (and some clearly bad ones ©).

Conclusion and summary

- Quality dataset available on selected species
- 3D cubes with submillimeter precision information about bone and meat location
- High-level information thickness, angle, length on various levels:
 - Species
 - Fish
 - Single bone
- Very suitable for further analysis. Available in following formats:
 - Solidworks files (.SLDPRT)
 - Matlab files (.mat)
 - STereoLithography files (.stl)
- Can be downloaded for free just send an email. Contact: jtt@sintef.no.

